
Int. J. of Advanced Networking and Applications 295
Volume: 01, Issue: 05, Pages: 295-300 (2010)

Design and Implementation of a Two Level
Scheduler for HADOOP Data Grids

Dr G. Sudha sadhasivam

Professor, Department of Computer Science & Engineering, PSG College of Technology,
 Peelamedu, Coimbatore, TamilNadu 641004, India

 Email:sudhasadhasivam@yahoo.com
Anjali M

ME Software Engineering, Department of Computer Science & Engineering,
PSG College of Technology, Peelamedu, Coimbatore, TamilNadu 641004, India

Email:anjalinairm@gmail.com

---ABSTRACT---
Hadoop is a large scale distributed processing infrastructure designed to handle data intensive applications. In a
commercial large scale cluster framework, a scheduler distributes user jobs evenly among the cluster resources. The
proposed work enhances Hadoop’s fair scheduler that queues the jobs for execution in a fine grained manner using task
scheduling. In contrast, the proposed approach allows backfilling of jobs submitted to the scheduler. Thus job level and task
level scheduling is enabled by this approach. The jobs are fairly scheduled with fairness among users, pools and priority.
The outcome of the proposed work is that short narrow jobs will be executed in the slot if sufficient resource is not available
for larger jobs. Thus shorter jobs get executed faster by the scheduler when compared to the existing fair scheduling policy
that schedules tasks based on their fairness of remaining execution time. This approach prevents the starvation of smaller
jobs if sufficient resources are available.

Keywords: hadoop, scheduling, fair share scheduler, backfilling
--

Date of Submission: February 11, 2010 Date of Acceptance: April 08, 2010

 1. Introduction

Hadoop [6] is a large-scale distributed processing
infrastructure, designed to efficiently distribute large
amounts of work across a set of machines. It is an open
source project contributed by Yahoo and is licensed under
Apache Software Foundation (ASF). Hadoop is based on
the concept of moving computation to place of large data
sets. A scheduler allocates multiple tasks or jobs submitted
by multiple users to a set of resources. Some of the
characteristics of a good scheduler include optimal
processor utilization, good throughput, quick response
time, better turnaround time, minimized job waiting time and
fairness both users and resources.

The default job scheduler in Hadoop [6] has a first-in-first-
out queue of jobs for each priority level. Other schedulers
include the Facebook’s Fair Scheduler [7], and Yahoo’s
Capacity Scheduler [6]. Fair scheduling is a method of
assigning resources to jobs such that all jobs get, on
average, an equal share of resources over time. In capacity
scheduling, queues are guaranteed a fraction of the
guaranteed capacity. The free resources allocated to any
queue beyond its guaranteed capacity are reclaimed within
N minutes of need.

Backfilling is the process of allowing small jobs from
back of the queue to execute before large jobs that arrived
earlier, due to lack of sufficient processors for the large
jobs. Based on the number of maps and reduces in a job,
backfilling can be applied to bring shorter jobs to front of
queue such that they do not cause any delay to reserved
jobs. There are two types of backfilling, namely, EASY and
conservative. In EASY/aggressive backfilling [1], only job
at head of the queue has reservation. Conservative
backfilling [1] has reservation for every job.

In most of the commercially available systems, the
default scheduling policy is FCFS, and in those
management suites that also support backfilling, the
governing scheme used is EASY. Jobs can be sorted
according to priority, length of the jobs (short/long) and
with backfilling [8]. Maui batch scheduler [9], is a simple
FCFS batch scheduler, with a backfilling policy that
maintains a time reservation for the first job in the queue
using EASY backfilling. As the subfactor weights are set to
zero, the job’s queue time is the only factor that is not zero.
So the prioritizing function is the queue time. The default
scheduling of IBM’s LoadLeveler [12] is FCFS and the
default priority function is job’s queue time. Backfilling is
not set by default. If it is enabled, EASY backfilling policy is
used. In platform’s LSF[10] FCFS is default scheduling
policy. Backfilling is not enabled by default, but when

Int. J. of Advanced Networking and Applications 296
Volume: 01, Issue: 05, Pages: 295-300 (2010)

enabled, it’s default behavior is similar to EASY. Default
scheduler in PBS[d,e] is SJF. To prevent starvation of a job
a time out is set (default is 24 hours). No other job can run
until the starving job has completed. The system enters in
draining mode under starvation. Backfilling is supported
only in draining mode for specific queues. SGE [13] uses
FCFS, and Equal-Share scheduling policies (a fair share
scheduler). Currently, the system does not support
backfilling. The workloadmanagement of OSCAR [2] is done
using Maui or OpenPBS workload management systems.

In Hadoop, the jobs are submitted by the end user
to the jobtracker in the namenode. The scheduler in job
tracker ensures that it should be fair to both the processes
and the users . The fair share scheduler partitions the jobs
fairly into tasks depending on the current machine load.
Further, it does not utilize all slots if the task trackers are
configured heterogeneously. Even though a fair amount of
scheduling has been accommodated in the scheduler, it still
is restricted to the task level. One of the best methods of
scheduling that is currently available is the backfilling
strategy. This is added to the scheduler to enhance the
fairness of scheduling jobs in the job queue. Hence the
proposed approach aims at designing a scheduler that
ensures both job level and task level scheduling.

Section 2 and 3 provide the existing and proposed system
architectures. Experimental analysis is presented in section
4.

2. Existing System

2.1 System Architecture

Typically, a resource management system in the name node
of hadoop comprises a resource manager and a job
scheduler (Fig 2.1). The scheduler communicates with the
resource manager to obtain information about queues, loads
on compute nodes, and resource availability to make
scheduling decisions. The resource manager also sets up a
queuing system for users to submit jobs. Users can query
the resource manager to determine the status of their jobs.
In addition, a resource manager maintains a list of available

compute resources and reports the status of previously
submitted jobs to the user. The resource manager helps
organize submitted jobs based on priority, resources
requested, and availability. As shown in Fig 2.1, the
scheduler receives periodic input from the resource manager
regarding job queues and available resources, and makes a
schedule that determines the order in which jobs will be
executed.

Currently hadoop has the following schedulers:

1) Default Scheduler : It is the scheduler used in hadoop
without any extra configuration. It schedules jobs in first in
first out fashion irrespective of job size. The main drawback
of this scheduler is starvation of small jobs in the event of
resources being utilized by large jobs.

2) Capacity Scheduler: It schedules based on capacity of
the resources. In capacity scheduling, queues are
guaranteed a fraction of the guaranteed capacity. The free
resources allocated to any queue beyond its guaranteed
capacity are reclaimed within ‘N’ minutes of need.

3) Fair Scheduler : It is used to share MapReduce clusters
among multiple users. Fair scheduling is a method of
assigning resources to jobs such that all jobs get, on
average, an equal share of resources over time. Fair share
scheduling technique applied to clusters can also be
applied on a Grid-wide scale [3],[4].

 Fair share scheduler [5] ensures fairness to users and
jobs. Fairness ensures that no later arriving job should
delay an earlier arriving job. The Fair Scheduler arose out of
Facebook’s need to share its data warehouse between
multiple users. Fair share scheduling is a way to guarantee
application performance by explicitly allocating shares of
system resources among competing workloads to balance
between machine’s actual share and entitlement. It ensures
that over time, each job receives roughly the same amount
of resources. Hence, shorter jobs will finish quickly, while
longer jobs are guaranteed not to get starved. In fair
sharing, the scheduler keeps track of a "deficit" for each
job. Deficit is the difference between the amount of compute

User 1

User 2

User 3

User 4

User 5

Scheduler

Job Tracker in Name Node

Queue(s)

Data Node 1

Data Node 3

Data Node 2

Data Node 4

Data Node 5

Cluster Nodes

Data Node details
sent to Job

Job Assignment
to Data Nodes

User Jobs
submitted to Job

Fig 2.1: System Architecture

Int. J. of Advanced Networking and Applications 297
Volume: 01, Issue: 05, Pages: 295-300 (2010)

time it should have gotten on an ideal scheduler, and the
amount of compute time it actually got. Every hundred
milliseconds, the scheduler updates the deficit of each job.
Whenever a task slot becomes available, it is assigned to
the job with the highest deficit among the tasks meeting
their pool capacity guarantees.

Let us consider 3 groups of users having three, two,
and four jobs respectively. 33.33% of the available CPU
cycles is distributed to each user. A three users are in group
1, each user gets 11.11% CPU cycles. Similarly group 2
users get 16.67% CPU cycles and group 3 users get 8.33%
CPU cycles. 100% / 3 groups = 33.3% per group

2.2 Backfilling

Jobs submitted for scheduling can be broadly classified as
short, long and very long jobs [1]. To handle these jobs, fair
share approach can be enhanced by adding the backfilling
strategy. Backfilling [8],[12] resolves the fragmentation
problem caused by resource reservation and produces
significant benefits in scheduling. Backfilling allows
resource reservatio n for jobs which cannot be executed due
to lack of processors. The algorithm scans the queue, and
selects short jobs which can utilize the available resources
as backfill jobs. Backfill jobs are scheduled to run before the
resource-reserve job. In this way, backfilling dramatically
improves system utilization and decreases the response
time of short jobs. When using backfilling, users should
provide an estimate of job’s run time which is used by the
scheduler to determine job’s termination time and start time.
If the requirements of the current job are not satisfied, it is
queued. Whenever a job finishes using less than its
allotted time, the algorithm tries to promote the existing
jobs.

There are two types of backfilling, EASY and
conservative. In EASY/ aggressive only job at head of the
queue has reservation. Conservative backfilling has
reservation for every job. With EASY Backfilling, short jobs
can run in advance provided they do not delay the job at
the head of the queue. The effects on other jobs will be
ignored and the execution of other jobs may be delayed.
Conservative Backfilling is not as aggressive as EASY
because it only picks out jobs which make no delay of any
previous job. It allows scheduling decisions to be made
according to the submission time of job. The proposed work
enhances the Fair Scheduler with EASY backfilling strategy
of jobs based on their estimated time.

3. Proposed System Architecture

The proposed system brings about a job level scheduling
in Fair Scheduler. This is done by using the backfilling
scheduling. Based on the number of maps and reduces in a
job, backfilling can be applied to bring shorter jobs to front
of queue such that they do not cause any delay to reserved
jobs. An EASY backfilling strategy is used as an initial
phase. The jobs of various sizes are submitted to the
scheduler.

The proposed approach is a two level scheduler which
first schedules each pool jobs into a queue and then
schedules the tasks for each of the queue. The Fair
Scheduler groups jobs into “pools” and performs fair
sharing between these pools. Each pool can use either FIFO
or fair sharing to schedule jobs internal to the pool. In FIFO
pools, jobs are ordered first by priority and then by submit
time, as in Hadoop’s default scheduler. In fair sharing pools,
job priorities are used as weights to control how much share
a job gets. A high-priority job gets more weight than a
normal-priority job. Pools can be given weights to achieve
unequal sharing of the cluster. Normally, active pools
(those that contain jobs) will get equal shares of the map
and reduce task slots in the cluster. The fair scheduler can
limit the number of concurrently running jobs from each
user and from each pool. The jobs that will run are chosen
in order of submit time and priority. Jobs submitted beyond
the limit, wait for one of the running jobs to finish.

The sequence of operations in Fair Scheduler (Fig.3.1)
with backfilling is listed as follows:

1. Group jobs into pools

2. For each job, calculate the number of maps and
reduces

3. User estimated time for the job is calculated as

 Estimated time = (maptime*no. of
maps)+(reduce time*no. of reduces)

4. Assign reservation for jobs based on priority
which inturn decides the job’s share.

5. If a job has completed execution, then remove it
from the queue.

6. For each runnable job, allocate predefined number
of minimum number of slots. If job requires more
slots than predefined slots, it will be executed later.
If job requires less slots then extra slots are given
to other jobs.

7. Update weight as weight=weight * priorityfactor

8. Calculate Minimum Slots for each job.

9. Update TaskCount using num_Tasks =
total_Tasks – running_Tasks –finished_Tasks +
.needed_Tasks_for_job.

10. Update Fair share parameter as
fairshare= (weight * oldslots) / totalweight

11. Update Deficit for every timedelta (500ms) as
MR_deficit= (fairshare - running) * timedelta

12. If job job finishes earlier (in finish_time < user-
estimated_time) then rearrange the queue and
bring short job to beginning of the queue.

13. Goto step 6

Int. J. of Advanced Networking and Applications 298
Volume: 01, Issue: 05, Pages: 295-300 (2010)

4. Experimental Results

When the job is submitted by the user, it goes to the
jobclient. The jobclient in turn passes the job to the
jobtracker. The client can now choose the pool in which the
job should be run, provided the pools are configured. The

jobs are now sent to the scheduler. The scheduler resides
within the jobtracker. Hence no RPC calls are required. The
jobs are scheduled based on the backfilling strategy first,
and then sent to the Fair Scheduler for the task level
scheduling. The results of execution can be viewed from the

user interface

The results were taken with pools having fair scheduler with
a backfilling startefy and pools having fair scheduling with

get the
jobs in

the pool

for each
job,calculate
no. of maps
and reduces

Get user estimated time for each
job, time for job= (maptime*no. of
maps)+(reduce time*no. of
reduces)

Get current
systime(). Assign

reservation for
jobs

for each job

create to
remove list

updateMinSlots-
calculate slots for

each job, slots
left=giveMinSlots

Create list of
reserved jobs

fairshareschedule
r.start()

get runstate
of job in
progress

updateTaskCo
unt() -needed
Tasks
=totalTasks-
runningTasks -
finishedTasks
+taskSelector.
neededTasks
(job)

updateFairShar
e - fairshare=
(weight*
oldslots)/total
weight

update
clock.getti
me()
Returns
system
current

updateDeficit(timedelta)
updates map/reduce
deficit=(fairshare-
running)*timedelta

bring short job
to front

job finished job finishes in
time<user
estimated time

Update
weight()
weight=weight
*priorityfactor

updateRunnabi
lity()

Finish
ed/run
ning

Int. J. of Advanced Networking and Applications 299
Volume: 01, Issue: 05, Pages: 295-300 (2010)

no backfilling. Equal number of map and reduce slots(5
each) were allotted to both the pools to ensure uniformity.

a) Case 1 : When all the jobs submitted are of the same size,
it is observed that the schedulers take almost same amount
of time to complete as there is no variation in the size of
jobs submitted.

 b) Case 2: The proposed scheduler executes 2MB job prior
to 2.5 MB job due to backfilling (TABLE 2).

 c) Case 3: Initially two small sized jobs (1 MB), 1 job of size
2.5 MB and 1 job of size 3.5 MB size were submitted to the
scheduler. Later during execution, a new job of size 1 MB
was given, as shown in Figure 5, first 2 small sized jobs are
completed. Then the third small job (1MB) are considered
after the 2.5 MB job (when free slots were available).

Thus the short jobs get completed first and the overall
completion time is decreased because the number of short
and narrow jobs is higher. The backfilled scheduler can thus
be applied where there are a large number of short jobs than
less preferred long jobs.

5. Conclusion

Scheduling is the process of deciding how to commit
resources between a variety of tasks. A scheduler is
necessary when multiple tasks or jobs are submitted by
multiple users to a set of resources. It is a very important
component in a large scale distributed system. One of the
critical requirements of a scheduler is that it should be fair
to both the processes and the users. The proposed work
enhances the existing schedule in hadoop with backfilling.
This enhancement ensures both job level and task level
scheduling. The outcome of the proposed work is t hat short
narrow jobs will be executed faster by the scheduler when
compared to the current scheduling policy. Hence the
overall throughput of the system is improved.

6. Acknowledgements

The authors would like to thank Dr.Rudramoorthy, Principal,
PSG College of Technology and Mr. Chidambaran
Kollengode, Director, Cloud Computing Group, Yahoo
Software Development (India) Ltd, Bangalore for providing
the required facilities to complete the project successfully.
This project is carried out as a consequence of the Yahoo’s
University Relation Programme with PSG College of
Technology.

References

[1]. Adam K.L Wong, M.Goscinki, Evaluating the
EASY backfill job scheduling of Static Workloads
on clusters, IEEE 2007 International conference
on Cluster Computing

[2]. B. des Ligneris, S. Scott, T. Naughton and N.
Gorsuch, Open Source Cluster Application
Resources (OSCAR): design, implementation and
interest for the [computer] scientific community,
First OSCAR Symp., May 2003.

Job

Size (in
Mb)

Scheduling
without
backfilling

Scheduler with
backfilling

Map
time
(sec)

Finish
Time
(sec)

Map
time
(sec)

Reduce
time (sec)

1 2.5 4.23 5.07 4.33 5.11

2 2.5 4.48 5.01 4.42 5.09

3 2.5 4.41 5.07 4.45 5.09

4 2.5 6.34 6.50 6.50 6.61

Job Size (
MB)

Scheduler
without
backfilling

Scheduler with
backfilling

Map
time
(sec)

Finish
Time
(sec)

Map
time
(sec)

Reduce
time
(sec)

1 1 .52 2.50 1.02 2.52

2 2 1.39 2.57 1.38 3.01

3 2 3.32 3.34 2.39 3.08

4 2.5 2.35 2.57 3.36 3.51

Job

Size
(in
Mb)

Scheduling
without
backfilling

Scheduler
with
backfilling

Map
time
(sec)

Finish
Time
(sec)

Map
time
(sec)

Reduce
time
(sec)

1 3.5 5.58 6.15 5.18 5.37

2 1 1.34 2.49 .22 2.15

3 2.5 2.26 2.49 1.57 2.26

4 1 1.24 2.57 .55 2.26

5 1 5.49 6.23 4.45 5.36

Table 2 : Case 2 – Medium sized jobs

Table 3 : Case 3 - More small jobs

Table 1 : Case 1 – Equal size jobs

Int. J. of Advanced Networking and Applications 300
Volume: 01, Issue: 05, Pages: 295-300 (2010)

[3]. Bo Li, Dongfeng Zhao, Performance Impact of
Advance Reservations from the Grid on Backfill
algorithms, IEEE Sixth International Conference
on GCC, 2007

[4]. Erik Elmorth, Peter Gardfjall, Design & Evaluation
of a Decentralized System for Grid-wide Fair share
Scheduling, IEEE First International Conference
on e-Science ,2005

[5]. Gerald Sabin, Garima Kochhar,Job Fairness in Non-
Preemptive Job Scheduling, IEEE ICPP’04

[6]. Hadoop Fair Scheduler Design Document from jira
Hadoop documentation

[7]. J. Kay and P. Lauder. A fair share scheduler.
Commun. ACM,31(1):44–55, 1988.

[8]. Juan Wang, Wenming Guo, The Application of
Backfilling in Cluster Systems, IEEE International
Conference on Communication and Mobile
Computing, 2009

[9]. MOAB workload manager (Maui scheduler) source
code. http://www.supercluster. org/moab/. Version
3.2.6.

[10]. Platform Computing Inc. Platform LSF.
http://www.platform.com/products/LSFfamily/

[11]. R. L. Henderson, D. G. Feitelson and L. Rudolph,
Job scheduling under the Portable Batch System,
Job Scheduling Strategies for Parallel Processing,
Lect. Notes Comput. Sci. vol. 949, (Springer-
Verlag, 1995), 279-294

[12]. S. Kannan, M. Roberts, P. Mayes, D. Brelsford,
and J. F. Skovira, Workload Management with
LoadLeveler, IBM, first edition, Nov 2001.
ibm.com/redbooks

[13]. Sun Microsystems, Inc. Sun grid engine.
 http://gridengine. sunsource.net/, 2004.
[

[14]. V. Systems, Portable Batch System, Administrator
Guide, 2000 (OpenPBS Release 2.3)

Authors Biography

Dr G Sudha Sadasivam is working as a
Professor in Department of Computer Science
and Engineering in PSG College of Technology,
India. Her areas of interest include, Distributed

Systems, Distributed Object Technology, Grid and Cloud
Computing. She has published 20 papers in referred journals
and 32 papers in National and International Conferences.
She has authored 3 books. She has coordinated two AICTE
– RPS projects in Distributed and Grid Computing areas.
She is also the coordinator for PSG-Yahoo Research on Grid
and Cloud computing. You may contact her at
sudhasadhasivam@yahoo.com

Anjali M is pursuing M.E in Software
Engineering in PSG Co llege of Technology,
India. Her areas of interest include Grid and
Cloud Computing. You may contact her at
anjalinairm@gmail.com

